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THE EFFECT OF BLADE CRACK ON MODE
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The e!ects of blade crack on mode localization in rotating bladed disks are
investigated in this study. A disk consisting of periodic shrouded blades is used to
simulate the bladed disk of a turbo-rotor. Blades on the disk are approximated as
Euler}Bernoulli beams. A crack in the blade is regarded as a local disorder of the
system. This local disorder might introduce the so-called mode localization
phenomenon in this mistuned system. The Galerkin method is employed to derive
the equation of motion of the mistuned system, with the blade crack. The e!ects of
position, depth of crack and rotating speed on the localization phenomenon in the
rotating blade-disk system are studied. Numerical results indicate that the blade
crack may be one of the reasons for the occurrence of the localization phenomenon
in the rotating bladed disk.

( 1999 Academic Press
1. INTRODUCTION

The dynamic analysis of repetitious engineering structures is greatly simpli"ed by
assuming perfect periodicity. Unfortunately, this mathematical idealization is
invalid due to unavoidable manufacturing and material defects. Due to
manufacturing #ows or cyclic fatigue during operation, cracks frequently appear in
the rotating machinery [1, 2]. A blade crack may cause local change in the
#exibility, i.e., structural irregularity which may change the dynamic behavior of
the structure. As noted by several investigators [1, 9], the existence of a local defect
in the coupled periodic system may introduce the so-called vibration localization
phenomenon. However, these studies have not focused on the investigation of mode
localization. Most types of crack are surface cracks in the rotating machinery, but it
is di$cult to emphasize on fracture mechanics in this model. To make the analysis
even easier, the investigation of a two-dimensional problem using a model of
a crack extends over the entire chord, is necessary. Krawczuk et al. [3}9] have
studied the vibrational behavior for the blade, beam and rotor with a crack by the
two-dimensional crack model. In this study, the crack blade is still modelled as
a two-dimensional model, i.e., a two-span beam model [9].

The localization phenomenon is known to occur in coupled periodic structures
under certain circumstances by local structural or material irregularities. Such
localization may in turn localize the vibrational modes and thereby con"ne the
22-460X/99/410085#19 $30.00/0 ( 1999 Academic Press
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vibrational energy. Recently, a number of studies have been conducted to
investigate mode localization in periodic structures [10}14]. Studies on normal
mode localization in nearly periodic system in one, two and three dimensions were
published by Cai et al. [15, 16]. Di!erent models and parameter values used in the
above analyses have, however yielded di!erent and even con#icting conclusions.

The localization phenomenon may occur in a rotating bladed disk under certain
circumstances, such as structural or material irregularity. The natural frequencies or
mode shapes of the mistuned system can be seriously a!ected by such local
irregularity. The amplitudes of individual defected blades may in turn be seriously
excited. The localized vibrations further increase the amplitudes and stresses
locally. The shrouded bladed disk of a turbo-rotor can be regarded as a periodic
system if all the blades are assembled periodically. The dynamic behavior of such
a shrouded blade-disk system has been studied by Cottney and Ewisn [17],
whereas the fundamental aspects of mode localization in mistuned turbo-
machinery rotors have been studied by Bendisksen et al. [18}21]. More recent
studies by Cha and Pierre et al. [22}25] have dealt with vibrational localization in
the mistuned system with a multi-mode subsystem.

Most of the studies on mode localization are limited to stationary structures,
with assumed structural and material irregularity. Only a few studies on the
e!ects of crack and rotation on localization in a shrouded bladed disk have been
conducted.

The individual blades of the shrouded blade-disk are approximated as
Euler}Bernoulli beams, and a two-span beam with a torsional spring is used in
modelling the cracked blade. The shrouded e!ect, which is regarded as a massless
spring e!ect, is considered in order to introduce the constraint between the blades.
The e!ects of crack size, crack position and rotation speed on mode localization in
the shrouded blade disk have been investigated in this study.

2. EQUATIONS OF MOTION

The periodic shrouded blade structure is shown in Figure 1, consisting of a rigid
hub and a cyclic assembly of N coupled blades. Each blade is coupled with the
adjacent one through a shroud. A massless spring k

s
is assumed to model the

function of this shroud. The length of the cantilever beam is ¸"R
o
!R

h
, and

every blade is coupled by a spring k
s

to the adjacent one at position R
c
. The

notation l
s
(r, t) denotes the transverse #exible de#ection of the sth blade as

a constant rotating speed X.
The moment of inertia and the cross-sectional area of the sth blade are denoted

as I
s
and A

s
respectively, while the Young's modulus of the blade is denoted as E.

2.1. BLADES WITHOUT CRACK

According to Kuang and Huang [26], the e!ect of coriolis force on the mode
localization phenomenon in a turbo disk system is not signi"cant. By neglecting the
coriolis force and the vibration in the radial direction, the kinetic energy of the sth



Figure 1. Geometry of the rotating bladed disk.
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blade is given by
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where the subscript s denotes the blade number of the disk. The corresponding
strain energy of the sth blade is
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By applying Hamilton's principle, the equation of motion of the sth blade in the
transverse direction can be obtained as
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for s"1, 2,2, N. (3)

For simplifying the notations, a number of non-dimensional parameters are de"ned
as

rN"
r!R

h
¸

and rN"0P1, (4)
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By substituting these dimensionless variables into the equation of motion of the sth
blade, it yields
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for s"1, 2,2, N, with the boundary conditions
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The solution of the above eigenvalue problem can be expressed as
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where ts
i
(rN ) is the comparison function of equation (9) and qs

i
(t) the coe$cient,

which is to be determined. For simplicity, three exact bending modes of the
clamped cantilever beam ts

i
(rN ) are considered in this article. They are
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The coe$cients j
i
are the roots of
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Using Galerkin method, the equation of motion of the sth blade can be derived in
matrix form as
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2.2. BLADE WITH A CRACK

Considering a crack on the mth blade of this system, it may be regarded as
a mistuned system. The response of the mth cracked blade can be expressed as

lN m (rN , t)"
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(rN ), (21)

where tm
i
(rN ) are comparison functions of equation of motion of the cracked blade.

The qm
i
(t) are the coe$cients to be determined. For simplicity, only three bending

modes are considered in this study, and they are calculated from the cracked beam
model. The cracked blade, as shown in Figure 2, is modelled as a two-span beam
coupled with a torsional spring. This cracked beam model has been studied by
Rizos and Asprogathos [9]. The notation ¸

c
denotes the position of the crack, while

the depth of the crack is a. The #exibility G caused by the crack with depth a can be
derived from Broke's approximation [27] as
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Figure 2. Geometry of the cracked blade.
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where K
I
is the stress intensity factor under mode I loading, k the Poisson Ratio,

b the width of the blade, h the height of the blade, P
b
the bending moment at the

crack, and G the #exibility of the blade.
The magnitude of stress intensity factor can be derived from Tada's formula [28]

as
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By substituting the stress intensity factor K
I

in equation (22), it leads to
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the bending sti!ness k
T

of the cracked section of a blade can be expressed as
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The corresponding kinetic energy of the cracked blade is
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The strain energy of the cracked blade can thus be found as
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In this case, the equation of motion of the cracked blade can be derived as
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The boundary conditions of this cracked blade are
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The solutions of such a two-span beam with a torsional spring can be assumed to be as
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Three modes, i.e., m"3 are assumed. The coe$cients of functions /m1
i

(rN ) and
/m2
i

(rN ) can be obtained by substituting equations (44) and (45) in the above
boundary conditions. Table 1 lists coe$cients for the blade with a crack at the root.
The coe$cients for the blade with a crack at di!erent positions, i.e., M̧

c
"0)2 and 0)4

are presented in Table 2. The comparison functions of the whole cracked blade can
thus be expressed as
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where u(rN ) is a unit step function.
TABLE 1

¹he magnitude of coe.cients for the blade with a crack at the root

(a) M̧
c
"0)0, c"0)01

B
1

B
2

B
3

B
4

k
i

i"1 1)00010 !1)36214 !0)99987 1)36214 1)8750
i"2 1)00019 !0)98167 !0)99981 0)981678 4)6939
i"3 1)00024 !1)00037 !0)99973 1)00051 7)8546

(b) M̧
c
"0)0, c"0)05

B
1

B
2

B
3

B
4

k
i

i"1 1)00245 !1)36042 !0)99755 1)36042 1)8733
i"2 1)00441 !0)97737 !0)99559 0)977379 4)6896
i"3 1)00745 !0)99328 !0)99254 0)993322 7)8473
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k
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i"1 1)00929 !1)35542 !0)99070 1)35542 1)8683
i"2 1)01656 !0)96499 !0)98343 0)964995 4)6772
i"3 1)02795 !0)97302 !0)97211 0)972909 7)8269

Note: Only B
1
, B

2
, B

3
, B

4
, as the crack at the root of blade.



TABLE 2

¹he magnitude of coe.cients for the blade with a crack at di+erent locations

(a) M̧
c
"0)2, c"0)10

A
1

A
2

A
3

A
4

k
i

i"1 1)0000 !1)3597 !1)0000 1)3397 1)8715
i"2 1)0000 !0)98138 !1)0000 0)98138 4)6940
i"3 1)0000 !1)01206 !1)0000 1)01206 7)8327

B
1

B
2

B
3

B
4

k
i

i"1 1)00631 !1)36217 !0)99274 1)35710 1)8715
i"2 1)00071 !0)98234 !1)99822 0)98007 4)6940
i"3 1)02197 !0)97863 !1)24493 1)24573 7)8327

(b) M̧
c
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1

A
2

A
3

A
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k
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i"1 1)0000 !1)36154 !1)0000 1)36154 1)8736
i"2 1)0000 !0)98337 !1)0000 0)98337 4)6882
i"3 1)0000 !1)00139 !1)0000 1)00139 7)8488
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B
2

B
3
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4

k
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i"1 1)00316 !1)36449 !0)99441 1)35800 1)8736
i"2 1)00280 !0)97374 !1)03175 0)01356 4)6882
i"3 1)01379 !1)00244 !1)14455 1)14534 7)8488
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By substituting equations (42) and (43) into equations (31) and (32), the equation
of motion of the cracked blade can be obtained in the matrix form as
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2.3. EQUATION OF MOTION OF THE MISTUNED SYSTEM

For the sake of simplicity, the same comparison function is assumed for each
individual blade, i.e., ts

j
(rN ),t

j
(rN ). The equation of motion of the entire disk

system can be expressed as

[M]MXG N#[K] MXN"0, (51)

where the system mass matrix [M] and the system sti!ness matrix [K] are

[M]"

[m]
1

0 0 . 0 0 0

0 [m]
2

0 . 0 0 0

0 0 [m]
3

. 0 0 0

. . . . . . .

0 0 0 . [m]
N~2

0 0

0 0 0 . 0 [m]
N~1

0

0 0 0 . 0 0 [m]
N

, (52)

[K]"
EI

oA¸4

[aN ]
1

!b1
1
[U] 0 . 0 0 !b1

N
[U]

!b1
1
[U] [aM ]

2
!b1

2
[U] . 0 0 0

0 !b1
2
[U] [aN ]

3
. 0 0 0

. . . . . . .

0 0 0 . [aN ]
N~2

!b1
N~2

[U] 0

0 0 0 . !b1
N~2

[U] [aN ]
N~1

!b1
N~1

[U]

!b1
N
[U] 0 0 . 0 !b1

N~1
[U] [aN ]

N

,

(53)

MXN"[ MqNT
1
, MqNT

2
,2, MqNT

N~1
, MqNT

N
]T (54)

and

[aN ]
s
"[k

s
]#[K]

s
#b1

s
[U]#b1

s~1
[U], (55)

[U]"Mt
i
(RM

c
)N Mt

j
(RM

c
)NT, (56)

bM
0
"bM

N
. (57)



MODE LOCALIZATION IN CRACKED BLADE DISKS 95
The non-dimensional frequency u6
n
of equation (51), i.e., the natural frequency of the

mistuned system, is de"ned as
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The lowest natural frequency of the tuned system without any rotational speed, i.e.,
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"3)516, is used for reference in the following numerical analysis.

2.4. FORCE RESPONSE

Consider the blades to be excited by a uniformly distributed harmonic force
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Let the dynamic response of the bladed-disk system be
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The modal matrix [;] of the mistuned system is calculated from equation (51).
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The corresponding resonant response can be written as
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where uN
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is one of the natural frequencies of system.
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3. NUMERICAL RESULTS AND DISCUSSIONS

A rigid hub attached to 46 uniform blades is used to approximate the bladed
disk. The existence of mode localization for a mistuned bladed disk system with
a cracked blade is investigated. The e!ects of rotational speed of the disk, depth and
location of the crack on mode localization have also been studied.

As the crack propagates on a blade, it may not only alter the dynamic behavior of
this blade, but may also introduce the so-called mode localization phenomenon in
Figure 3. Tip displacements of the uncracked and cracked systems with di!erent depths of crack
(for the the 1st mode), RM

c
"0)5, M̧

c
"0)0, b1 "0)2, XM /uN *

1
"0)0, uN *

1
"3)516: (a) system without crack

c"0)0 (u6
1
"3)516); (b) system with a crack c"0)01 (u6

1
"3)516); (c) system with a crack c"0)1

(u6
1
"3)476).
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the whole mistuned system. In this numerical example, a crack is assumed on the
23rd blade.

3.1. FREE VIBRATION ANALYSIS

Figure 3(a) shows the tip vibration pattern of the tuned system at the lowest
resonant frequency uN *

1
"3)516. The vibrational energy is uniformly distributed on

the individual blades of the tuned system. The corresponding tip vibrational
Figure 4. Tip displacements of the system with a crack at di!erent locations (for the the 1st mode),
RM

c
"0)5, c"0)1, b1 "0)2, XM /uN *

1
"0)0, uN *

1
"3)516: (a) system without crack at M̧

c
"0)0 (u6

1
"3)476);

(b) system with a crack at M̧
c
"0)2 (u6

1
"3)495); (c) system with a crack at M̧

c
"0)4 (u6

1
"3)511).
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patterns for the mistuned system, with di!erent depths of crack, i.e., c"0)01
and 0)1, are shown in Figures 3(b) and 3(c). These "gures indicate that
the vibrational energy is con"ned on the blades near the cracked blade of these
two mistuned systems. It can also be observed that the localization pattern
varies with the depth of the crack. Generally, the model localization phenomenon
is enhanced with increase in the crack depth. The localization pattern may also
be a!ected by location of the crack. The tip vibration pattern for di!erent
crack locations are shown in Figure 4(a)}4(c), which indicate that the
Figure 5. Tip displacements of the cracked system under di!erent rotating speeds (for the 1st
mode), c"0)01, M̧

c
"0)0, RM

c
"0)5, bM "0)2, uN *

1
"3)516: (a) crack system without speed XM /u6 *

1
"0)0

(uN
1
"3)516); (b) crack system at the speed XM /u6 *

1
"0)25 (uN

1
"3)528); (c) crack system at the speed

XM /u6 *
1
"0)5 (uN

1
"3)529).



MODE LOCALIZATION IN CRACKED BLADE DISKS 99
localization phenomenon is suppressed as the crack position is changed from
M̧
c
"0)0 to 0)4.
Figures 5(a)}5(c) illustrate the e!ect of rotational speed X on mode localization

in the mistuned system. These results appear to indicate that the con"nement of
vibrations may be strongly localized as the rotational speed is increased. In other
words, mode localization phenomenon may be enhanced as the rotational speed is
increased. The weak or strong localization phenomenon depends upon the
magnitude of disorder and the modal coupling e!ect. Now, the strong modal
coupling e!ect is studied in this investigation. Figure 6(a) shows the weak
localization at the lower order mode uN

1
as the strong coupling sti!ness at the blade

tip. However, as above, the strong localization may appear at the higher order
mode as shown in Figure 6(b).

3.2. FORCE RESPONSE

Consider that the blades of the system are excited by a uniformly distributed
harmonic force with an excitation frequency u6 . A signi"cant resonant response of
the cracked blade can be observed as the excitation frequency approaches the
localization frequency, i.e., the lowest natural frequency of the mistuned system.
Figure 7 shows the time response of the blades near the cracked blade, for
excitation at the localization frequency uN "uN

1
"3)529.

Figure 8 shows the changes in frequency response of the 23rd blade with or
without a crack located at the "xed end. There is only a single peak,
uN "uN

1
"3)516, in the frequency spectra of the 23rd blade in the tuned system,

which shows that every individual blade possesses the same frequency and mode.
However, a group of peaks is observed for the corresponding cracked blade, with
a crack at the blade root. The lowest natural frequency at u6

1
"3)476 is the

localization frequency. Figure 9 displays the e!ect of rotational speed on the
frequency response of the cracked blade in this mistuned system, which reveals that
the rotational speed is a signi"cant factor for mode localization. The mode
localization phenomenon is enhanced signi"cantly with increase in the rotational
speed.

4. CONCLUSIONS

The e!ects of crack on mode localization in the rotating blade-disk system have
been studied. The major conclusions that can be drawn from this study are
summarized as follows:

(1) It has been found that the crack on a bladed is one of the parameters for
localization in the shrouded blade-disk system. For a coupled blade system, the
existence of a crack may change the vibrational mode drastically, i.e., from the
extended to the localized.

(2) The rotational speed has a signi"cant in#uence on mode localization in the
mistuned system. As the rotational speed of the disk is increased, the mode
localization phenomenon is enhanced.



Figure 6. Tip displacements of the cracked system with strong modal coupling sti!ness (for the 1st
and 2nd order modes), c"0)05, M̧

c
"0)0, RM

c
"1)0, b1 "10)0, XM /uN *

1
"0)5, uN *

1
"3)516: (a) the "rst

order mode (u6
1
"3)549); (b) the second order mode (uN

47
"22)085).

Figure 7. Tip responses of the blades under the lowest localization frequency u6
1
"5)329; c"0)01,

M̧
c
"0)0, RM

c
"0)2, bM "0)2, XM /uN *

1
"0)5.
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Figure 8. Di!erence between frequency responses of the 23rd blade with and without a crack,
bM "0)2, RM

c
"0)5, XM /uN *

1
"0)0, M̧

c
"0)0: (a) c"0)0; (b) c"0)1.

Figure 9. Frequency response vibration of the cracked blade with or without considering the
rotating speed, bM "0)2, RM

c
"0)5, M̧

c
"0)0, c"0)01: (a) XM /uN *

1
"0)0, (b) XM /uN *

1
"0)5.
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(3) The magnitude and location of the crack on the blade also a!ect mode
localization in the shrouded blade-disk system.

(4) Only the cracked blade of the mistuned system shows a signi"cant resonant
response as the excitation frequency approaches the localization frequency.
Obvious beat response on blades near the cracked blade is observed at
localization frequency.
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